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The mean velocity profile in three-dimensional 
turbulent boundary layers 

By H. G. HORNUNG AND P. N. JOUBERT 
Department of Mechanical Engineering, University of Melbourne 

(Received 17 September 1962) 

The mean velocity distribution in a low-speed three-dimensional turbulent 
boundary-layer flow was investigated experimentally. The experiments were 
performed on a large-scale model which consisted of a flat plate on which secon- 
dary flow was generated by the pressure field introduced by a circular cylinder 
standing on the plate. The Reynolds number based on distance from the leading 
edge of the plate was about 6 x lo6. 

It was found that the wall-wake model of Coles does not apply for flow of this 
kind and the model breaks down in the case of conically divergent flow with 
rising pressure, for example, in the results of Kehl (1943). The triangular model 
for the yawed turbulent boundary layer proposed by Johnston (1960) was 
confirmed with good correlation. However, the value of yuJv  which occurs a t  
the vertex of the triangle was found to range up to 150 whereas Johnston gives 
the highest value as about 16 and hence assumes that the peak lies within the 
viscous sublayer. Much of his analysis is based on this assumption. 

The dimensionless velocity-defect profile was found to lie in a fairly narrow 
band when plotted against y/S for a wide variation of other parameters including 
the pressure gradient. The law of the wall was found to apply in the same form 
as for two-dimensional flow but for a more limited range of y. 

1. Introduction 
The theory of turbulent boundary layers at this stage is incomplete, in that 

the mechanism of turbulence in boundary layers is not understood well enough 
to afford a direct theoretical solution of the problem throughout the entire region 
occupied by the boundary-layer flow. In  an attempt to bridge this gap it is usual 
to assume the mean velocity profile in the boundary layer to follow some of 
various laws which in the main are based on experiment, at  least at  some stage 
of their development. Among the most successful of these laws for two-dimen- 
sional flows are the ‘law of the wall’ and the ‘velocity defect law’. 

The same procedure has been adopted in three-dimensional boundary-layer 
flow and the better-known assumptions about, or theoretical models for, the 
mean velocity profile in such flow are enumerated below. 

(i) Prandtl (1946) suggested a model in which the flow in the free-stream 
direction is given by u/u, = G(y/S) and the flow in a direction normal to both 
x and y by 4% = eG:(y/b) dY/S)’ 
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where e is the tangent of the angle between the directions of flow at the wall and 
in the free stream, and G and g are universal functions of y/6 with the boundary 
conditions 

This model is the three-dimensional counterpart of the power-law approximation 
to two-dimensional boundary layers. 

(ii) Moore & Richardson (1957) extended the model of von Doenhoff and 
Tetervin for two-dimensional layers to the case of three-dimensional flow by 
expressing the functions G and g above as G (y/O,, H,) and (l-y/lOOz)r, re- 
spectively. 

(iii) Coles (1956) extended his own model for two-dimensional flow to the 
three-dimensional case and the mean-velocity profile according to this hypothesis 

y = 6 :  g = O ,  G = 1 ;  y = O :  g = 1 ,  G = O .  

is given by 

W 

Region I Region I1 
< - 1  7 -  .___ 

U 

FIGURE 1. The model of Johnston. 

where f is the logarithmic law of the wall, W is Coles’s universal wake function, 
and 11 is a tensor function of x: and z. That is, the profile is made up of the vector 
addition of two plane profiles having the shape of the logarithmic law of the wall 
and of the wake function respectively. 

(iv) Johnston (1960) proposed a model based on his own experimental results 
which specifies that in a polar plot of the mean velocity profile (velocity us yaw 
angle), the tip of the velocity vector follows two straight lines (see figure 1). 
This means that w/ul  = eu/ul in region I and w/ul = A( 1 - u/ul) in region 11. 

Without discussing the usefulness or further development for practical 
applications of these models, the experimental verification to date of the last 
two models will be dealt with briefly. 

The Coles model has been verified by himself (1956) in the experimental 
results of Kuethe, McKee & Curry (1949), who used a swept wing as an experi- 
mental model, and quite good correlation existed there. The model was also 
confirmed, but with considerable scatter, by Blackman & Joubert (1961) who 
used a delta wing. Johnston verified his triangular model using the experimental 
results of Gruschwitz (19359, Kuethe et al. (1946) and Johnston (1960) with good 
correlation. 
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Because the same set of experimental results (Kuethe et al.) confirms both 
models, the question arises as to whether they are congruent. a n  examination 
of the two models reveals that they can give profiles which are to all intents 
and purposes the same, but only in the special case when the ‘wake component ’ 
of the Coles model is much larger than the ‘wall component ’, or, expressing this 
in terms of Johnston’s model, when e 9 A .  When e has about the same value 
as A a polar plot of the Coles model yields a curved locus of the velocity vector tip. 

The Coles model is more restrictive than that of Johnston in that it specifies 
the distribution of mean velocity with y to some extent. The triangular model 
merely specifies a relation between cross-flow and main-flow components of the 
mean velocity profile, and no mention is made of the nature of the dependence 
of mean velocity on y in region 11, because such a relation was not required by 
the analysis with which Johnston puts this model to practical use. However, 
i t  is perhaps informative to consider the implications of the straight line in 
region I1 more closely. 

From the experimental fact that this line is straight in region I1 it can be 
concluded that if the profile is observed from a frame of reference moving along 
with the free stream, the outer profile (region 11) appears to be in one plane and 
passes through the moving origin. In  other words, the velocity defect is in a plane 
in region I1 in the same way as the velocity is in a plane in region I. This is 
interesting if viewed in a similar way as is sometimes done in two-dimensional 
layers, namely, that in the inner layer the profile obeys a ‘law of the wall’ 
dependent on effects at  the wall (shear stress, viscosity) and in the outer layer 
it obeys a ‘defect law’ dependent on free-stream effects (pressure gradient, 
boundary-layer thickness). 

The aim of this work was to produce a set of experimental results about the 
mean-velocity profile of low-speed three-dimensional turbulent boundary layers 
with secondary flow. In  particular the applicability or otherwise of the two models 
proposed for this type of flow by Coles and Johnston was to be investigated. In 
order to obtain results with reasonable accuracy and some generality, the 
experiment was devised on a large scale, with thick boundary layers and a large 
field of yawed flow. 

2. Experimental model 
In  the past, three-dimensional boundary layers have been examined mainly 

on swept or delta wings, with a few exceptions such as the experiments of 
Gruschwitz and Johnston. Since a very large wind tunnel would be needed to 
accommodate a swept wing on which boundary layers of about, say, 4 in. thick- 
ness can be produced, it was considered that the thickening and yawing of the 
boundary layer would have to occur consecutively. 

This was achieved by an experimental model which consisted of a flat plate 
of 20ft. length placed in the slightly divergent closed working section of the 
Melbourne University wind tunnel. A circular cylinder of 22 in. diameter was 
arranged with its axis perpendicular to the plate at about 17 ft. from the leading 
edge (see figure 2 ) .  
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This cylinder produced a pressure field which had a strong component at  right 
angles to the initial flow direction over a reasonably large area. The boundary 
layer examined was that on the flat plate about + to 2 diameters upstream from 
the cylinder. 

I ’ loundarv 
I 

I 

layer plate i I 

I I 

I Model I 

FIGURE 2.  Plan view of inodel in wind tunnel. 

3. Experimental results 
By the use of a screen the turbulence level of the free stream was reduced to 

a value which it was hoped would be low enough to comply with the requirements 
for the Coles model to apply in two-dimensional flow. This requirement is that 
the turbulence level should be less than 0.5%. However, the actual level in 
these experiments could not be reduced below 0.56% at about 88ft./sec, and 
this may have influenced the results. 

The pressure field in the region upstream of the cylinder was found to be 
approximated by potential flow theory for a semi-infinite cylinder in an infinite 
uniform stream although both were very finite and the stream was decelerating 
slightly. The contours of experimental pressure coefficient C,,, and theoretical 
pressure coefficient, C,, (note the difference in definition below), are plotted on 
the same scale in figure 3 where 

P, - PB 

For purposes which will be seen later we attempted to obtain, from the experi- 
mental pressure contours, the actual field in magnitude and direction, but 
unfortunately this was not possible with any accuracy. 

A phenomenon which arises from the use of an experimental model as described 
above is that in the region directly in front of the cylinder the pressure rise is 
strong enough to cause the slow-moving particles near the wall to decelerate 
to negative velocities. In  other words, there is a region in front of the cylinder 
where the flow in the inner boundary layer is away from the cylinder. On the 
centre-line of flow, this manifests itself in a separation point and, in the field, 
in a so-called ‘three-dimensional separation line ’. This last term is perhaps a 
misnomer, in that the flow does not separate along such a line and the shear 
stress is not zero there. Another way of looking at  this phenomenon is to visualize 
the streamlines in the boundary layer just in front of the cylinder. For backflow 
to occur, the outer streamlines have to double back on themselves towards the 
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wall, and this results in a standing vortex wrapped around the base of the 
cylinder. Smoke photographs at low Reynolds number were taken to demonstrate 
this backflow and these are shown in figure 4, plate 1. An excellent smoke 
picture of the same phenomenon is also given in Thwaites (1960). 
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FIGURE 3. Measured isobars compared with potential-flow theory. 
- 9  C,, = ( P - Z J B ) / ( P G - P B ) ;  ---- 9 c,, = ( P - P P , ) / 4 P ~ z .  

4. Velocity and yaw profiles 
Profiles were taken at the locations indicated in figure 5 and a typical profile 

is shown in figure 6." In  order to test the model proposed by Coles, the quantity 
2u sin 6/ul sin 0, was plotted against y/6. This quantity is proportional to the 
component of velocity normal to the shear-stress direction and so should be pro- 
portional to the Coles wake function if the model proposed by Coles is correct. 

* A complete table of  the observed values of u/ul a t  different values of y and 0 is being 
held by the Editor and will be sent to readers who request it. 



Mean velocity projile in three-dimensional turbulent boundary layers 373 

22 

I I 

6 in. 

/Pressure taps 

0 I 0 I 1 1  0 

+10 +11 + I 2  +13 114  +15 I 

I 
FIGURE 5. Location of stations and pressure taps. 
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FIGURE 6. Typical velocity and yaw profile (run 24). Logarithmic plot. 
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FIGURE 7. Test of tho Coles wake function in yawed flow. 
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FIGURE 8. The wake component on the plane of symmetry. 
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A comparison of the two is given in figure 7. It can be seen that even if 6 is chosen 
as twice the value of y for which the deviation from the logarithmic law of the 
wall reaches half the maximum deviation, no stretch of the imagination will 
make the experimental points fall on the wake-function line. 

It is interesting to note that even on the centre-line of flow, where the profiles 
are plane in a divergent field, the Coles wake hypothesis does not hold but in 
the same wind tunnel and on the same plate the wake hypothesis is an accurate 
representation of the boundary-layer profile if the cylinder is removed (see 
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YlS 
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P I G ~ R E  9. Tho wakc function in Kchl’s results taken in channel K 7 b with 
laterally convergent flow and positive pressure gradient. 

figure 8). This appears to suggest that the wake hypothesis breaks down in 
laterally divergent flow with rising pressure. This is confirmed by the experi- 
mental results of Kehl (1943) who performed his tests on the centre-line of one 
wall of divergent and convergent ducts both with positive and negative pressure 
gradients. These results were analysed by the authors and are shown in figures 9, 
10 and 11. Notice that in the duct with divergent flow and pressure rise, the 
wake function becomes progressively less accurate, in a downstream direction 
(run K 3 1 is at the upstream end and run K38 a t  the downstream end of the duct). 

The results were also plotted in the polar form u/ul ws 0 in order to test the 
triangular model of Johnston and the result is shown in figures 12 and 13. It is 
seen that all the points fall quite accurately on the two straight lines and John- 
ston’s model can be confirmed with confidence. The triangular model was found 
to be a reasonably accurate representation of the profile even in the region of 
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FIGURE 10. The wake function in Kehl's results taken in channel K 1 rim 

with laterally divergent flow and negative pressure gradient. 
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FIGURE 11. The wake function in Kehl's results taken in channel K 3 
with laterally divergent flow in a positive pressure gradient. 
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b 

12 

13 

14 

15 
FIGURE 12. Polar plots of velocity vs yaw angle. 

FIGURE 13. Polar plots of velocity us yaw angle. 

backflow, where however velocities were low in regions where the flow has a 
strong component normal to the wall which could not be measured, since the 
probe used was aligned parallel to the wall. The polar plots for the ‘region of 
backflow’ are shown in figure 14. 
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FIGURE 14. Polar plots (velocity ‘us yaw) in the region of backflow. 

5. Shear stress 
In  order to check whether the logarithmic law of the wall still holds in three- 

dimensional bounday layers the wall shear stress had to be determined. This 
was done by using the method introduced by Clauser (1954), which assumes the 
law of the wall. Such a procedure appears at first sight to defeat its own purpose, 
but since Clauser’s method relies on a fairly large portion of the velocity profile 
and since in these experiments at  least 4 points of the profile, and sometimes 10, 
fell on the required slope, one can at least deduce whether a correlating quantity 
u,, say, exists or not. It is not possible to deduce that this quantity u, is equal to 
(70/p)6 but it will be assumed below that it is, generalizing from two-dimensional 
flow. 

The resulting ‘law of the wall’ is shown in figure 15 and the wall shear-stress 
field is plotted in figure 16 demonstrating the ‘region of backflow’. The values 
of C; obtained by Clauser’s method are given in table 1. 

From the shear stress at the wall the value of yu,/v a t  the vertex of the triangle 
could be determined. This was found to take values ranging from about 15 to 
80 in the ‘region of forward flow’ and up to 150 in the ‘region of backflow’, 
thus invalidating the assumption, on which Johnston bases his analysis, that 
region I lies entirely within the linear sublayer. 

6. The velocity defect 
In  order to non-dimensionalize the velocity defect, u, - u, it was divided by 

the maximum value which the defect takes in region I1 of the Johnston model, 
i.e. the dimensionless velocity defect 1 u, - u I / I u, - up 1 was plotted ZIS y/6 in 
figure 18 where up is the velocity at the junction point of regions I and 11. 
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The points from twelve runs lie within a band of scatter which is much nar- 
rower than was expected from two-dimensional boundary-layer experience, 
because the pressure gradient, which is one of the main quantities affecting the 

0 

Run no. Run no. 
c 5  0 16 
1 6  17 
c 7  0 18 
a 8  a 19 - 
' 9  a 21 
I 10 * 22 

11 G 23 
' 12 0 24 
9 13 e 25 - 
7 14 0 26 
1 15 

50 100 0 

2/u,lv 
FIGURE 15. The law of the wall. __ , u/u, = 5.6 log,, (yu,/v) + 4.9. 

, Separation point 
A - 

FIGURE 16. Tho shear-stress field (arrows in direction of flow). 

shape of the defect profile of two-dimensional layers was strongly variable in 
the field where boundary-layer traverses were taken. It is not possible that there 
existed similarity between conditions a t  different stations, since the dimension- 
less parameters involved in the problem 7,,/(6*dp/dz), C;, 0,) A ,  e were different 
in every profile. It is still possible, however, that the effects of the variation in 
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RWl 
no. 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
1s 
19 
21 
22 
23 
24 
25 
26 

U1 4 a tan-' A Air temp. 
(ft./sec) (deg.) C; x lo2 (deg.) (deg.) ("C) 

58.3 30.2 0.181 9.6 21.0 23-24 
62.0 24.2 0.23 10.1 24.3 21-25 
51.0 26.7 0.06 5.0 7,5 24-29 
54.3 35.2 0.135 9.2 16.4 26-28 
50.1 1.4 0.05 1.6 - 19-25 
55.7 0.8 0.143 1.5 - 24-30 
57.3 7.6 0.16 0.8 - 27-31 
59.0 13.3 0.18 2.8 7.6 29-3 1 
57.5 14.2 0-2 18 4-9 12.2 21-27 
59.8 14.6 0.235 4.2 16.0 25-31 
64.6 13.6 0.236 3.5 14.4 24-29 
45.5 138.0 0.72 3-0 8-2 24-27 
52.3 99.0 0.92 21.8 42.7 17-24 
59.6 80.4 0.67 19.8 50.0 2 6 3  1 
68.7 37.0 0.40 16.6 - 31-36 
54.9 61.2 0.18 11.6 26.6 27-33 
60.2 45.9 0.26 14.8 30.4 2 6-2 9 
61.6 30.2 0.32 13.9 32.1 21-27 
81.2 29.9 0.31 13.9 33.4 29-37 
64.0 30.0 0.28 14.4 - 32-33 
58.4 41.0 0.24 17.7 29.0 30-32 

TABLE 1. Boundary conditions of the profiles 
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Run no. 

m 
0.8 

v x 1 0 4  
(ft.*/sec) 

1.65 
1.65 
1.09 
1.69 
1.64 
1.69 
1.71 
1-72 
1-67 
1.70 
1-68 
1-65 
1.62 
1-70 
1.76 
1.74 
1.70 
1.67 
1.76 
1.75 
1.73 
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FIGURE 17. The velocity-defect profile (linear plot). 
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these parameters was such that they opposed each other to an extent sufficient 
to keep the points in figure 17 within a band of scatter such as it is. However, 
no dependence of the profile on any of the above parameters could be deduced 
because in any two runs, a t  least two of the five parameters were different. 

It was hoped at first that an empirical relation between the four vector quan- 
tities u,, gradp, T~ and u1 - up could be deduced from the measurements taken 
and the velocity-defect field was plotted for that purpose. It is given in figure 18. 
Unfortunately, however, a number of attempts to detect a quantitative pattern 
in the fields remained fruitless, partly due to the fact that the magnitude of the 
pressure gradient could only be determined with poor accuracy from the measure- 
ments taken. 

< 

Flow -- I 

Model’ /- 

FIGURE 18. The velocity-defect field. 

FIGURE 19. Velocity-defect, shear-stress, free-stream-velocity 
and pressure fields superimposed. 

It is not certain, of course, that a quantitative relation between these fields 
can be obtained without introducing other variables, because they all represent 
boundary conditions only; although the velocity defect remains constant in 
direction through most of the layer, and gradp remains virtually constant 
throughout the layer (this was verified by the static pressure reading from the 
probe). Nevertheless, the four fields were superimposed in one diagram in 
figure 19 to demonstrate their qualitative interdependence. 
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Johnston obtained a quantitative dependence of the defect direction on the 
angle a through which the free-stream velocity has turned from a reference in the 
two-dimensional field upstream, with a number of assumptions. This relation 
A = 2a, is plotted as a full line with the present experimental points in figure 20. 
The error in the measurement of both tan-lA and a was always less than go so 
that the scatter of the points in figure 20 cannot be explained in terms of 
experimental error. 

tan-l A ,  deg. 

FIGURE 20. Free-stream direction and model parameter A .  

7. Error evaluation 
Since this article represents mainly a presentation of experimental facts, an 

evaluation of the errors in the recorded measurements should go with it. This is 
given briefly below. 

Max. error in u/ul (at u/ul = 0.25) = & 2 yo 
Min. error in u/ul (at u/ul = 1.00) = f 0.5 :lo 
Max, error in y (at y/6 = 0.005) = - + 10 % 
Min. error in y (at y/6 = 1.000) = If: 0.05 % 

(6 in all cases was approximately 4 in.) 

Max. error in 8 (at 8 + lo) 
Min. error in 8 (at 8 + 1') 
Max. error in 8 (at 8 + 20') 
Min. error in 8 (at 0 + SO0) 

= k 30 % (low speed) 
= k 10 % (high speed) 
= k 1.5 % (low speed) 
= k 0.5 yo (high speed) 

Measurements were carried out by means of a probe consisting of one central 
total-head tube 1.2 mm diameter and flattened at  the tip to an outside thickness 
of 0.025in. (inside 0.010in.) with yaw tubes l.Omm diameter on either side of it, 
and two static pressure tubes about 4 in. away on each side of the three central 
tubes (see figure 21). The probe could be rotated and made to traverse the boun- 
dary layer by a remotely controlled mechanism. In  order to check the readings 
taken by this probe a hot-wire anemometer was used to duplicate the results for 
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FIGURE 21. Tip of boundary-layer probe. 
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FIGURE 22. Check on probe measurements by means of hot-wire. 
Runs 23 and 24 a t  the same location, run 24 at higher speed. 

carried out on a Iarge enough scaIe to assume that the proximity of the wall 
(which has a different effect on hot-wire than it has on Pitot-tube readings) did 
not influence the measurements and that the flow outside the sublayer was 
independent of viscosity. 
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one profile. The effect of tunnel speed on the same profile was also looked into 
and the three sets of points obtained are all plotted in figure 22. It is seen that 
no appreciable difference exists between them, showing that the experiment was 
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8. Summary of results 
The model proposed by Coles for the velocity profile in three-dimensional layers 

does not apply to flow of the kind investigated here (namely a secondary-flow 
boundary layer generated by the pressure field of a circular cylinder downstream 
of a fully turbulent two-dimensional boundary layer) and becomes inaccurate 
on the centre-line of divergent flows with positive pressure gradients even in the 
case of the conically divergent flow of Kehl. It is possible, however, that this 
model applies when the flow is subjected to a transverse pressure field right from 
the beginning of the boundary layer as, for example, on a swept wing. 

The triangular model for the polar plot of velocity vs yaw angle as proposed by 
Johnston was confirmed with good correlation; but the value of y u J v  at the 
vertex of the triangle was found to range up to 150 whereas Johnston gives the 
highest value as about 16. This contradicts the assumption made by Johnston 
that region I lies within the viscous sublayer. This assumption is the basis of 
much of Johnston’s analysis. The approximate relation A = 2a given by 
Johnston was found to be approximately true only for small values of A .  Since 
the scatter of points on the plot of tan-l.4 vs a is much worse than can be ex- 
plainedin terms of experimental error, it is thought that a third parameter enters 
the relation A(a). 

The law of the wall applies to three-dimensional boundary layers in the same 
form as it does to two-dimensional layers up to the point where the boundary 
layer becomes yawed. 

The velocity defect is in a plane for the outer 97-99 yo of the boundary layer. 
This, of course, was implied by Johnston in proposing the triangular model, 
but it is thought here that this is a most significant phenomenon which simplifies 
the problem of the yawed boundary layer and so is well worth stating explicitly. 
The velocity defect, if non-dimensionalized by dividing it by the velocity defect 
at the vertex of the triangular model and if plotted versus y/6, falls within a 
reasonably narrow band even for widely varying values of pressure gradient, 
shear stress, velocity-defect direction and free-stream velocity. However, no 
dependence on any of these variables could be deduced because in any two runs, 
a t  least two of the four parameters were different. The defect profile is similar 
in form to the defect profile obtained in two-dimensional layers 
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FICXJRE 4, plate 1.  Smoke photographs. Cigarette smoke wets introduced into the flow by 
means of a thin tube at  about 3 in. from the plate, i.e. inside the boundary layer, as can 
be seen from the turbulent naturc of the flow. Air speed was approximately 15 ft./sec, 
Re,% 1.5 x lo6. The white line in the foregroimd is the flow centre-line. Notice tho path 
of the smoke dircctly in front of the model. 
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